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ABSTRACT

This paper describes a recursive detection scheme for point
targets in infrared(IR) images. Estimation of the background
noise is done using a weighted autocorrelation matrix update
method and the detection statistic is calculated using a re-
cursive technique. A weighting factor allows the algorithm to
have finite memory and deal with nonstationary noise charac-
teristics. The detection statistic is created by using a matched
filter for colored noise, using the estimai=d noise autocorre
lation matrix. The relationship between the weighting factor,
the nonstationarity of the noise and the probability of detec-
tion is described. Some results on one- and two-dimensional
infrared images are presented.

1. INTRODUCTION

A well known technique of detecting objects in noise is
matched filtering. For signal with known shapes, for a fixed
integration time, matched filtering has been applied in the
presence of white and colored noise[1}{2]. In the presence
of colored noise most detection schemes use a prewhiten-
ing filter {1J{2){3](4] to whiten the noise, before applying a
matched filter to get a detection statistic. This prewhiten-
ing filter may be adaptive or non adaptive depending on
the amount of a priori knowledge available about the cor-
rupting noise process. For detection in unknown and pos-
sibly nonstationary noise, an adaptive filter can be used,
leading to a two stage formulation with a prewhitening fil-
ter followed by a matched filter[3])(4]}{5]. If the object of
interest is known to be small, occupying less than a pixel,
this shape is then defined by the point spread function of
the optics which is known in advance. In this case, or in
the case where the shape of the signal is known precisely,
the two steps of whitening the noise and matching to the
signal can be combined into a single step.

In Section 2 we describe the algorithm for the estima-
tion of noise and the calculation of the detection statistic
as a single step algorithm. In section 3 we describe the

*This work was supported by the NSF [/UC Research
Center on Ultra High Speed Integrated Circuits and Systems
(ICAS) at the University of California, San Diego, The Office of
Naval Research, Applied Research and Technology Directorate
(Code 012) and the National Science Foundation under grant
#ECDB89-16669 and the U.S. Naval Ocean Systems Center In-
dependent Research Program.
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performance of this recursive detection technique in the
presence of non stationary noise. Section 4 describes the
application of this detection technique to infra red images
with two dimensional signals.

2. RECURSIVE ESTIMATION AND
DETECTION

For a known signal in colored noise, the detection statistic
is given by[1}[2]

g=2T27'x (1)
where g is the detection statistic, P is the autocorrelation
matrix of the noise, 8 a p X 1 vector is the known signal

the length of the known signal or the time of integration in
classical detection. ¢ is compared to a threshold, go, and
a decision on the presence or absence of the signal, s, is
made accordingly.

If the noise is unknown, ¥ must be estimated from the
received data. If the time of integration, n is fixed, a max-
imum likelihood estimate of the noise autocorrelation ma-
trix is given by {7]

&= x(k)x(k)T ()

k=0

Often, detection is done with a finite length, known signal
template and a continuous stream of input data. s .5 2
p x 1 vector, but a decision on the presence or absence of
8 has to be taken at the time n > p and at every time
instant after that. This is known as the recursive detection
probdlem.

In such a case, the detection statistic at each time n is
given by

g(n) = sT& 7 (n)x(n) &)

and the estimate of the noise characteristics can be im-
proved as more and more samples of the incoming data
become available. In particular, if the signal is assumed to
have very low energy as compared to the noise (as is the
case with point signals in spatially extended noise), Eq. 2
can be used to ‘estimate the noise recursively.

For nonstationary noise applications, a weighted esti-
mate can be used, leading to

@(n)zzjz:x""x(kqu)T (4)

k=0
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Figure 1: Input: Non-stationary
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Figure 2: Detection Statistic: weighted

where ) is a weighting factor. If the noise is nonstationary
and A < 1, this estimation technique will be able to track
the non stationarities in the noise and consequently give a
more precise detection performance than a fixed matched
filter. A = 0 corresponds to an instantaneous estimate of
the noise and A = 1 corresponds to the maximum likeli-
hood estimate for a stationary noise process. The tracking
behaviour of such an estimation process for 0 < A < 1, for
one dimensional adaptive prediction has been studied in
{8] and others. In section 3, the detection performance uf
such an estimation procedure is described.

Eq. 4 can be expressed as a recursion equation, to get
a recursive update equation for $7! ie,

P 'n)=2""'® N (n-1)
_ (,\"<I>"’(n = 1)x(n)xT(n)® }(n - 1)) (5)

1+ A-1xT(n)®-1(n - 1)x(n)

This is similar to the update equation used for updating
the weights of a recursive least squares adaptive filter [7].
This leads to a detection statistic given by

_ AT ® 1 (n ~ 1)x(n)
9" = T AT xT ()% (n = x(%) (6)

Simulation results for this weighted decision statistic are
shown for one dimensional nonstationary data. Fig. 1
shows the non stationary input to such a detection fil-
ter. The noise used, was a second order AR noise model,
and the coefficients of the model were allowed to change
abruptly at the sample point 512. Two signals were em-
bedded in this noise, one at sample point 400 and another
at 800. Fig. 2 shows the output from such a detection fil-
ter using Eq. 5. Fig. 3 shows the detection statistic that
would be obtained if the noise were assumed to be station-
ary, and the estimation of the autocorrelation matrix was
done without any weighting. This corresponds to A = 1. It
is seen that using the complete history of the noise process
to do a mazimum likelihood estimate of the noise autocorre-
lation matrix does not allow the matched filter to adapt to
any changes in the input noise and detection performance

e

Figure 3: Detection Statistic: without weighting

degrades with any change in the noise statistics. As seen
in Fig. 2, using a value of A = 0.99 leads to the matched
filter being able to adapt to the changing noise statistics
and hence provide a detection statistic corresponding to
the signal of interest.

3. DETECTION STATISTICS

In this section we study the change in the probability of de-
tection for this recursive estimation technique. The proba-
bility density function of the data under Ho (signal absent)
and H, (signal present ) is assumed to be Gaussian. The
variance under both test hypotheses are equal. The mean
under Ho is zero, while the mean under H; is known(2]
to be m = sT® 's. The probability of detection, for a
stationary process, then becomes

Py = %erfc [———9;:/2_'"] (7)

where, o is the variance of the process, m is the mean
under H,, go is the threshold used, and erfc() is defined
as

erfe(z) = -2‘; / s ®)

Similarly the probability of false alarm is defined as

o2

For a non-stationary process, assume that at then — 1
sample, the estimation process is exact and the autocorre-
lation matrix used in the detection process is exact. Then,
the following quantities can be found exactly as

PI¢=%erfc[ go ] (9)

' (n=1)=8"8"(n-1)""x(n-1) (10)
m*(n-1)=sT®(n~1)""s (11)
o*(n-1)= (T8 (n—1)""s) ? (12)
Pin-1)= %erfc [c, - 7";‘7(’(‘,1:-1—)1)] (13)
Pia(n=1)=zerfelC]  (19)

where the s implies the “optimum values” obtained by
the use of the exact autocorrelation matn«. Here Cy is a
constant defined by the required false alarm rate as C; =
erfc™t (2P)s).

Assuming the detector is designed to operate at a con-
stant false alarm rate, ie.,Prs(n — 1) = Pra(n; the new




“optimump”™ probability of detection in nonstationary noise
is given by Eq. 15

1

Tx* n -1 F]
Pi(n) = %erfc c - (S—‘I’—g)—-—s) (15)

where, ®°(n) is the ezact autocorrelation matrix at the
n'" sample.

The corresponding probability of detection based on the
estimated autocorrelation matrix is

sT<I>(n)"3>%

Pa(n) = %erfc c - ( . (16)

where, ®(n) = A®(n — 1) + x(n)xT (n).

To model the nonstationarity of the noise in the input
data, we assume a change in the inverse of the autocorre-
lation matrix as

B(n) ' =®(n-1)""+42% (17)

with A® describing the amount of non-stationarity in the
noise process.

Further, assuming A¥ to be small, and expanding the
square root in a Taylor series

Pi(n) ~ -;-erfc[Cd'] (18)
where
. _ m'(n-1) bo°(n-1)
C;=Cy Tre a1 2m(n 1) (19)
and § = sT A®s.

The probability of detection based on the estimated au-
tocorrelation matrix can be similarly found to be

Pa(n) % zerfe(Ci + Ad] (20)

where the factor by which this probability of detection dif-
fers from the optimum is given by

e IO (1 Y 1ot

7‘30‘(11—1) VA 2m*(n-1)
(21)
and
A =
AT R (n~1) ' P(n) B (n-1)" 8 am*(n-1)] (22)

142 1XT Pe(n1)~1x

Equations 20 21 and 22 define the relationship between
the probability of detection (Py), the rate of non station-
arity of the noise (A®P) and the weighting factor of the
weighted update (A). Thus a proper choice of A depends
on the autocorrelation matrix of the noise, and can infly-
ence the probability of detection.

Figure 4: Input: Object Embedded in Infrared Im-
age Data

4, TWO DIMENSIONAL DATA

Infrared image data typically consists of sequences of two
dimensional images in one or more spectral bands. Typical
applications range from the detection of very small tumors
in medical images to the detection of long range airborne
targets. The signal of interest in the application considered
is a small point source of light distributed around a single
pixel according to the point spread function of the sensor
optics. This point spread function is typically known. For
example Chan et. al. [9] show that for a Gaussian point
spread function and a small sub-pixel target, the known
signal can be modeled as

s(z,y)=Te™ == ,:’ »=2)? (23)

where T is the maximum height of the signal, (zo,y0) is
the spatial position of the signal and o, the rate of spatial
decay of the signal. This signal is typically embedded in
spatially extended nonstationary clutter

Since such data maybe highly non-stationary across the
image, a two dimensional version of the recursive detec-
tion procedure developed in section 2 can be formulated
by ordering the data lexicographically as a vector. The
autocorrelation matrix for such an ordered data set then
becomes a block toeplitz matrix[10]. Such a matched filter
was used in a noise canceler structure for multi-spectral
images and a typical input image and the corresponding
output detection statistic are shown in Fig. 4 and Fig. .
The noise autocorrelation matrix was estimated from one
channel of the multi-spectral data set, while the matching
was done on another channel.

The test signal in this case was uncorrelated between
the reference and the primary images. This enabled an
estimation of the noise statistics and led to considerably
whitening of the noise in the output detection statistic as
can be seen in Fig. 5.

The Signal to Noise Ratio(SNR) for a point signal in




Figure 5: Detection Statistic: Recursive

such an image was defined as the

+?
SNR =10log,, (-—'2) (24)
o3

where v, is the intensity value of the brightest pixel in a
given region of interest and o7 is the per pixel noise energy
in the same region defined as

ol = '1;% ZZI’(!’J)

M? is the size of the region of interest. For the figures
shown, a window size of 3x3 (corresponding to p = 9 in
Eq. 3) was chosen to run this recursive matched filtering
algorithm. The region of interest around the target was
chosen to be of size 9x9(viz. in Eq. 25 M = 9). The input
SNR was then found to be 2.67dB and the output SNR
was found to be 9.70dB.

The removal of correlated clutter from the input can be
clearly seen from the histograms of the input and output
images. Fig. 6 shows the fractional distribution of the pixel
intensity values in the input image. Note the non-gaussian
distribution of the pixel intensities, caused by the nonsta-
tionarity of the clutter in the image. Fig. 7 shows the
fractional distribution of the pixel intensity values for the
output detection statistic. Clearly the different sections of
the correlated clutter which caused the input distribution
to look non-gaussian have been eliminated by the noise
canceler structure and the output detection statistic has a
distribution much closer to gaussian.

In summary, the recursive estimation procedure when
coupled with the colored noise matched filter leads to a
detection procedure that can adapt to nonstationarity in
the background clutter.

(25)
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